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This paper examines the transients that occur in a cylindrical
plasma capacitor in a static magnetic field Hy when a constant electric
field Eg perpendicular to the magnetic is suddenly applied to the plas-~
ma layer. The time characteristics of the transients are determined by
the dynamics of the plasma polarization in the external electric and
magnetic fields [1, 2]. Just as in [1, 2], we shall consider the electro-

static polarization of the plasma when flow of the steady current through

the plasma is stopped.,

1. We shall consider two coaxial cylinders with inside radius r; and
outside radius Ry (Fig. 1) unbounded along the z-axis. In the space be-
tween the cylinders is a cylindrical layer of homogeneous two-compo-
nent partially ionized plasma with inside and outside radii rg and R,
respectively. The magnetic field Hy is directed along the z-axis. The
entire system is symmetric relative to the axis of the cylinders. The
space between the cylinders is divided into three regions: 1 (ry Sr =
=1g), 2(p =1 =R), and 3 (R =1 = R,). Charges are absent in regions
1 and 8.

At time t = 0, a potential difference Up is applied to the cylinders
such that the inside cylinder has the potential Up/2 and the outside
—U,y/2. The electric field at t = 0 is the same in all three regions and
is Eg = Ug/R1 ~ 11 (Eq has only a radial component), since at time t=
= 0 charge separation has not yet occurred in the plasma, i.e., itis
assumed that the voltage on the capacitor plates is established much
sooper than substantial changes occur in the plasma,

In the presence of external electromagnetic fields, Lorentz forces
act on the electrons and ions, owing to which the electrons and ions in
the plasma move, colliding with the neutral atoms of the gas with the
frequencies v and Vps respectively. The motion of charged particles
in the plasma changes the electron and ion concentrations nefr, t) and
np(r, t) from the common initial concentration level Ng = Np =np=
= const,

The heterogeneous concentration of electrons and ions in the plasma
causes diffusion currents. And in addition, since neg(r,t) #npfr, t), a
space-charge field is produced, which, in turn, affects the motion of
the charged particles (the electron and ion temperatures are considered
constant and equal Te and Tps respectively).

2. Using the expressions for vep(r,t) and vpl.(r, t) that were obtained
in [2} from the continuity equations, it is easy to find n (r, t) and
np(r, 1) with allowance for the obvious initial condition

n,(r, 0)=np(r, 0)=0,
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where Iy, I1 and yq, y; are Bessel and Neumann functions of the zeroth
and first order, respectively. The parameters A j and yj are determined
from transcendental equations (18) and (19) in [2]. The coefficients
Aes Ap, Be: B, be, bp, Ce, and Cp are obtained if the correspond-
ing subscript is taken into account in (2.2). The coefficients Peps

Qcp: Peps deps Res Ses and Sp, just as the parameters 8 and 6y, are
defined in [2}. The coefficients in (2.1) and (2.2) are functions of the
magnetic-field swength Hy. At high Hy, the coefficients behave as
1/HH, where yu =2.

The obtained expressions for the distributions of the electron and
ion concentrations essentially characterize the dynamics of electro-
static plasma polarization in a magnetic field with sudden application
of a radial electrostatic field.

In the absence of a magnetic field, the expressions for the concen~
trations take the form
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where wep, o, and B are defined in [2].



58 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

It follows from (2.3) and (2.4) that the electron concentration os-
cillates with the electron as well as with the ion frequencies, wherein
the electron -oscillation amplitude includes damped exponential
functions in which the damping factor is determined by the frequencies
of collisions of electrons and ions with neutral atoms. The ion concen-
tration, however, oscillates only with the ion frequencies, and the
damping factor is a function only of the frequency of collisions of ions
with neutral atoms.

The application of a magnetic field does not create directional
charged-particle motion, but in the presence of an electric field it
reduces eleciron and ion mobility and thereby retards layering of the
plasma. As follows from (2.1) and (2.2), the electron and ion concen-
trations decrease as the magnetic field is increased, and when Hq —>
we have ne(r,t) — 0 and np(r, t) ~0 as 1/u%

When t— =, a polarized plasma state is established with the con-
centration distributions
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3. Since there are no charges in regions 1 and 3 (the walls con-
fining the plasma are impermeable), the potential distribution in these
regions satisfies the Laplace equation

AT =0 (n<r<(ro),
<

AUz =0 (R<r<<RY: 3.1)

Accordingly, the potential distribution in region 2 satisfies the

Poisson equation
AUp=—4ap (o<1 < R), p=-e(np—ne). (3.2)

If we substitute the values of n, and Iy from (2.1} and (2.2) into
(3.2), we obtain

Al = — 4xteny E [v;2; () b, ) + 2, M, (1), (1] (3.8)
i

As boundary conditions for (3.1), (3.2), and (3.3) we have
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The last equation of {3.4) reflects the experimentally observed ab-
sence of thin charge layers on the surfaces r = rg and r = R. The func-
tions Pe(t) and app(t) in (3.3) are -
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Equations (3.1), (3.2), and (3.3) completely describe the space and
time potential distributions within the plasma capacitor.

If we solve (3.1), (3.2), and (3.3) with alilowance for boundary con-
ditions (3.4), we obtain
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The functions Pe(t) and ¥ (r) determine the wansient relaxation
times and are damped with respect to time.

If we let t— < in (3.5), (8.6), and (3.7), we obtain expressions
for the steady potential distribution, which corresponds to transient
damping.

It is clear from (3.5), (3.6), and (3.7) that the potential is a con-
tinuous function of the two variablesr and t. When the potentials Uj,
U,, and Ug vary with time, a transient current appears in the capacitor
circuit. In view of the continuity of the cwrent in regions 1 and 3,
which correspond to the potentials Uy and U,, the displacement current
will be equal to the convection current of region 2. Therefore, the den-
sity of the current flowing through the capacitor can be determined as
follows:
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The mansient current is damped. After a sufficiently long time inter-

val (much greater than 2/v_), therefore, the current ceases, where in
the charge per unit length of the cylindrical surface is changed by the
value
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The change in the charge on the plates of the cylindrical capacitor
due to the plasma in it involves a change in its capacitance, provided
that the potential difference remains constant. This change per unit
length of the capacitor can be found from (3.8)
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Formula (3.9) makes it possible, from measured AC, to determine
the current and, therefore, the electron and ion concentrations,

Note that when Hp—> =, the capacitance change AC, just as
n(r, t), nr, t), and j(r.t), approaches zero. This means that with very
strong magnetic fields (IH/El >1), no charge separation and, therefore,
no plasma polarization occur, i.e., the original homogeneous plasma
distribution remains unchanged.

The authors thank S, A, Regirer for useful comments.

REFERENCES

1. K. $. Golovanivskii and V. A. Pogosyan, "Some properties of
a plasma capacitor,™ Zh. Tekhn. fiz., no. 2, p. 297, 1966.

2. K. S. Golovanivskii, V. A. Pogosyan, and O. S, Torosyan,
"Polarization of a cylindrical plasma layer in anexternal static magnet-
ic field,” Magnitnaya gidrodinamika [Magnetohydrodynamicsj, no. 1,
1967,

31 January 1967 Moscow and Erevan



